Composting-Like Conditions Are More Efficient for Enrichment and Diversity of Organisms Containing Cellulase-Encoding Genes than Submerged Cultures
نویسندگان
چکیده
Cost-effective biofuel production from lignocellulosic biomass depends on efficient degradation of the plant cell wall. One of the major obstacles for the development of a cost-efficient process is the lack of resistance of currently used fungal enzymes to harsh conditions such as high temperature. Adapted, thermophilic microbial communities provide a huge reservoir of potentially interesting lignocellulose-degrading enzymes for improvement of the cellulose hydrolysis step. In order to identify such enzymes, a leaf and wood chip compost was enriched on a mixture of thermo-chemically pretreated wheat straw, poplar and Miscanthus under thermophile conditions, but in two different set-ups. Unexpectedly, metagenome sequencing revealed that incubation of the lignocellulosic substrate with compost as inoculum in a suspension culture resulted in an impoverishment of putative cellulase- and hemicellulase-encoding genes. However, mimicking composting conditions without liquid phase yielded a high number and diversity of glycoside hydrolase genes and an enrichment of genes encoding cellulose binding domains. These identified genes were most closely related to species from Actinobacteria, which seem to constitute important players of lignocellulose degradation under the applied conditions. The study highlights that subtle changes in an enrichment set-up can have an important impact on composition and functions of the microcosm. Composting-like conditions were found to be the most successful method for enrichment in species with high biomass degrading capacity.
منابع مشابه
Effect of Zn deficiency stress on expression pattern of genes encoding bZIP4, bZIP79 and bZIP97 transcription factors in bread wheat (Triticum aestivum L.) cultivars
A factorial experiment (based on completely randomized design) with three replications was conducted in faculty of agriculture of Urmia University, Iran in 2016 to investigate the effect of soil Zn deficiency on the expression of genes encoding bZIP4, bZIP79 and bZIP97 transcription factors in Zn-efficient and Zn-inefficient bread wheat cultivars. Cv. Bayat (Zn-efficient) and cv. Hirmand (Zn-in...
متن کاملBioconversion and Enzymatic Activities of Neurospora Sitophila Grown Under Solid State and Submerged Fermentation on Sago Hamps (RESEARCH NOTE)
N.sitophila was grown under controlled conditions of solid state and submerged fermentation on Sago hampas. The optimum conditions of protein enrichment previously established for sugar beet pulp was used for this study. Under this condition the protein content of Sago hampas under solid state increased from 1.4 to 14.45% (W/W) whereas for Sago hampas and Sago starch, the protein content under ...
متن کاملFunctional Screening of Phosphatase-Encoding Genes from Bacterial Sources
Phosphatase (APase) enzymes including phytases have broad applications in diagnostic kits, poultryfeeds, biofertilizers and plant nutrition. Because of high levels of sequence diversity among phosphatases,an efficient functional screening method is a crucial requirement for the isolation of the encodinggenes. This study reports a functional cloning screening method for the iso...
متن کاملMicrobial Consortium for Effective Composting of Coffee Pulp Waste by Enzymatic Activities
Recycling of coffee pulp waste for composting is a time taken process and to reduce the composting period developing efficient decomposing microorganism is needed. The relationship between microorganism and its enzymatic activities lead for the better understanding to develop microbial consortium for effective composting. In the present study the organisms were screened which produces enzymes l...
متن کاملStudy of Mutations in the DNA gyrase gyrA Gene of Escherichia coli
Quinolones are a large and widely consumed class of synthetic drugs. Expanded-spectrum quinolones, like ciprofloxacin are highly effective against Gram-negative bacteria, especially Escherichia coli. In E. coli the major target for quinolones is DNA gyrase. This enzyme is composed of two subunits, GyrA and GyrB encoding by gyrA and gyrB, respectively. Mutations in either of these genes cause qu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016